1#ifndef TATOOINE_LAMBDA2_FIELD_H
2#define TATOOINE_LAMBDA2_FIELD_H
13 V::num_dimensions()> {
34 template <
typename Real,
size_t N>
43 auto S = (J + transpose(J)) / 2;
44 auto Omega = (J - transpose(J)) / 2;
45 auto A = S * S + Omega * Omega;
54template <
typename V,
typename Real,
size_t N>
Definition: lambda2_field.h:13
constexpr tensor_type evaluate(const pos_type &x, real_type t) const
Definition: lambda2_field.h:41
lambda2_field(const field< V, Real, N, N > &v)
Definition: lambda2_field.h:35
constexpr bool in_domain(const pos_type &x, real_type t) const
Definition: lambda2_field.h:49
V m_vf
Definition: lambda2_field.h:28
typename V::real_type real_type
Definition: lambda2_field.h:18
lambda2_field< V > this_type
Definition: lambda2_field.h:19
Definition: algorithm.h:6
auto lambda2(const field< V, Real, N, N > &vf)
Definition: lambda2_field.h:55
constexpr auto diff(polynomial< Real, Degree > const &f)
Definition: polynomial.h:179
constexpr auto eigenvalues_sym(Mat &&A)
Definition: eigenvalues.h:55
vec< real_type, NumDimensions > pos_type
Definition: field.h:20
Tensor tensor_type
Definition: field.h:18
auto as_derived() -> auto &
Definition: field.h:161
constexpr auto in_domain(const pos_type &, double) const
Definition: symbolic_field.h:50