Tatooine
Functions
ORMQR

Orthogonal Matrix. More...

Collaboration diagram for ORMQR:

Functions

template<typename T , size_t K, size_t M>
auto tatooine::lapack::ormqr (tensor< T, M, K > &A, tensor< T, M > &c, tensor< T, K > &tau, side const s, op trans)
 
template<typename T , size_t K, size_t M, size_t N>
auto tatooine::lapack::ormqr (tensor< T, M, K > &A, tensor< T, M, N > &C, tensor< T, K > &tau, side const s, op trans)
 
template<typename T >
auto tatooine::lapack::ormqr (tensor< T > &A, tensor< T > &C, tensor< T > &tau, side const s, op trans)
 

Detailed Description

Orthogonal Matrix.

ORMQR overwrites the general real \(m\times n\) matrix \(\mC\) with

side = L side = R
trans = N: \(\mQ\cdot\mC\) \(\mC\cdot\mQ\)
trans = T: \(\mQ^\top\cdot\mC\)

\(\mC\cdot\mQ^\top\)

where \(\mQ\) is a real orthogonal matrix defined as the product of \(k\) elementary reflectors

\(\mQ=\mH(1)\cdot\mH(2)\cdot\ldots\cdot\mH(k)\)

as returned by GEQRF. \(\mQ\) is of order \(m\) if side = L and of order \(n\) if side = R

Function Documentation

◆ ormqr() [1/3]

template<typename T >
auto tatooine::lapack::ormqr ( tensor< T > &  A,
tensor< T > &  C,
tensor< T > &  tau,
side const  s,
op  trans 
)

◆ ormqr() [2/3]

template<typename T , size_t K, size_t M>
auto tatooine::lapack::ormqr ( tensor< T, M, K > &  A,
tensor< T, M > &  c,
tensor< T, K > &  tau,
side const  s,
op  trans 
)

◆ ormqr() [3/3]

template<typename T , size_t K, size_t M, size_t N>
auto tatooine::lapack::ormqr ( tensor< T, M, K > &  A,
tensor< T, M, N > &  C,
tensor< T, K > &  tau,
side const  s,
op  trans 
)