Tatooine
|
Orthogonal Matrix. More...
Functions | |
template<typename T , size_t K, size_t M> | |
auto | tatooine::lapack::ormqr (tensor< T, M, K > &A, tensor< T, M > &c, tensor< T, K > &tau, side const s, op trans) |
template<typename T , size_t K, size_t M, size_t N> | |
auto | tatooine::lapack::ormqr (tensor< T, M, K > &A, tensor< T, M, N > &C, tensor< T, K > &tau, side const s, op trans) |
template<typename T > | |
auto | tatooine::lapack::ormqr (tensor< T > &A, tensor< T > &C, tensor< T > &tau, side const s, op trans) |
Orthogonal Matrix.
ORMQR overwrites the general real \(m\times n\) matrix \(\mC\) with
side = L | side = R | |
---|---|---|
trans = N : | \(\mQ\cdot\mC\) | \(\mC\cdot\mQ\) |
trans = T : | \(\mQ^\top\cdot\mC\) | \(\mC\cdot\mQ^\top\) |
where \(\mQ\) is a real orthogonal matrix defined as the product of \(k\) elementary reflectors
\(\mQ=\mH(1)\cdot\mH(2)\cdot\ldots\cdot\mH(k)\)
as returned by GEQRF. \(\mQ\) is of order \(m\) if side = L
and of order \(n\) if side = R
auto tatooine::lapack::ormqr | ( | tensor< T > & | A, |
tensor< T > & | C, | ||
tensor< T > & | tau, | ||
side const | s, | ||
op | trans | ||
) |
auto tatooine::lapack::ormqr | ( | tensor< T, M, K > & | A, |
tensor< T, M > & | c, | ||
tensor< T, K > & | tau, | ||
side const | s, | ||
op | trans | ||
) |